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Generalized Spectral Analysis of Planar Lines
on Layered Media Including Uniaxial and
Biaxial Dielectric Substrates

FRANCISCO MEDINA, MANUEL HORNO, MEMBER, IEEE, AND HENRI BAUDRAND, MEMBER, IEEE

Abstract —In this paper the spectral-domain analysis (SDA) is general-
ized in order to compute the dispersive properties of a wide variety of
planar and quasi-planar transmission lines (microstrips and finlines) printed
on a stratified dielectric medium. Uniaxial and biaxial dielectric anisotropy
can be easily manipulated due to the definition of a “transverse propaga-
tion matrix” characterizing each dielectric layer. The whole boundary
value problem is reduced to two simpler problems involving only one or
two dielectrics. Then, the spectral dyadic Green’s function is derived via a
recurrence algorithm. The dispersion equation is derived by using the
Ritz~Galerkin method. The numerical convergence is substantially im-
proved taking into account the asymptotic behavior of the series. A number
of illustrative examples have been included to emphasize the power of the
method.

I. INTRODUCTION

CCURATE knowledge of the propagation parame-
A ters of printed lines plays a vital role in the design of
modern microwave and millimeter-wave integrated cir-
cuits. Microstrip and finline configurations, the most
widely used transmission lines for this range of frequen-
cies, are becoming more and more complex, so it is desir-
able to include in any analysis the presence of several
dielectric layers and/or coupled strips or fins. On the
other hand, since certain materials used as substrates in
those circuits exhibit dielectric anisotropy (occurring natu-
rally or being introduced during the manufacturing
process), it is therefore interesting to include this contin-
gency. The importance of accounting for the anisotropy
has been emphasized in a comprehensive review paper by
Alexopoulos [1]. In this paper and the references therein,
the reader can find most of the major contributions on
planar lines with anisotropic substrates published prior to
1985.

‘The multiple boundary value problem appearing when
we have a number of planar conductors embedded in a
stratified dielectric medium has been examined under the
quasi-TEM assumption using different analytical tech-
niques (a detailed review of the literature on this subject is
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included in [2]). Cases involving anisotropic dielectrics
have also been treated, for instance, in [3]. Unfortunately,
the validity of these analyses is restricted to microstrip-like
structures operating at the lower end of the microwave
spectrum. The dispersive properties of these lines cannot
be inferred from this type of model, and the analysis
cannot be applied to non-TEM configurations such as
finlines. Therefore, a full-wave analysis is required to ade-
quately model their behavior. A number of techniques
capable of dealing with planar structures with isotropic
and /or anisotropic dielectrics using a dynamic model have
already been described. These include the finite difference
technique [4], the least square boundary residual method
[5], the singular integral equation method [6], the meth-
od of lines [7], the generalized transverse resonance
method [8], mode matching [9], the transmission line ma-
trix method [10], and the Wiener—Hopf technique [11].
Nevertheless, the spectral-domain technique (SDA) is the
most widely used, because of its feasibility in manipulating
multilayer structures with one or several conducting strips
[121, [13] or fins [14], [15].

In order to apply the SDA, the spectral dyadic Green’s
function must be calculated for the structure to be ana-
lyzed. To our knowledge, three different systematic meth-
ods to do this have been given in the literature, i.e., the
spectral-domain immittance approach [16], the transfer
matrix approach [17], and, more recently, an iterative
algorithm based on the use of vector potentials and equiva-
lent transmission line problems [18]. All these methods
consider isotropic materials, although the concept of
equivalent transverse transmission lines is extended in [19]
to uniaxial anisotropic dielectrics and recently has been
applied to the analysis of a unilateral finline with uniaxial
substrate [20] in the SDA context. Maia er al. apply the
SDA to microstrips and finlines on uniaxial substrates [21]
using an extension of the Hertz potential treatment pro-
posed by Lee and Tripathi [22]. A very general approach
for complex anisotropic layered media using a four-com-
ponent formulation (which yields first-order partial differ-
ential équations) is discussed from a theoretical point of
view by Krowne [23]. The dispersive character of the
fundamental modes of open microstrip and slotlike struc-
tures on anisotropic substrates is treated by introducing
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some transformed fields and using second-order differen-
tial equations [24], [25]. A fourth-order formulation is
presented in [26] to analyze a bilateral finline on a biaxial
anisotropic dielectric substrate. The extension of this
method to a general multilayer problem is not straightfor-
ward. ' ,
The approach presented in this paper tries to overcome
the difficulties inherent in the analysis of multilayer struc-
tures involving uniaxial or biaxial anisotropic dielectrics,
and also makes use of the SDA. The spectral dyadic
Green’s function is obtained via a recurrence algorithm
similar to the one reported in [27] for the quasi-static case.
The algorithm is based on the definition of a “transverse
propagation matrix” associated with each dielectric layer
and the reduction of the whole problem to simpler single-
or two-layer partial problems. The method leads to sec-
ond-order differential equations, in contrast to [23] or [26].

The dispersion equation is achieved via the standard

Ritz—Galerkin method. The asymptotic behavior of the
dyadic Green’s function and the Fourier transforms of the
basis functions (used to approximate the surface charge
density on the strips or the tangential electric fields in the
slots) is explicitly incorporated in the computer programs,
resulting in a drastic improvement of the convergence of
the series defining the entries of the Ritz—Galerkin matrix.
The theory developed in the paper has been used to write a

computer program to find the dispersion characteristics

(dominant and first higher order modes) of multistrip or
multifin configurations embedded in a layered dielectric
medium including uniaxial and biaxial anisotropic di-
electrics.- These programs have been conveniently checked
with previously published results. -

II. STATEMENT OF THE PROBLEM

Many planar transission lines used in practice can be
viewed as particular cases of the general geometry shown
in Fig. 1. This structure is assumed to be uniform in the z
direction and it consists of a number of printed conductors
embedded in a layered lossless dielectric medium, the
whole being enclosed by rectangular boundaries. The met-
allization thickness is negligible, and the electrical proper-
ties of the nonmagnetic dielectric materials will be de-
scribed by the following diagonal tensor:

et = €0 €, 2% + €, 9P +€,22). (1)

It is possible to take into account both isotropic and
uniaxial or biaxial anisotropic materials with optical axes
normal to region interfaces (materials are often supplied or
selected with this orientation). This, together with the
treatment of the multilayer problem using a “transverse
propagation matrix,” is the main feature of the analysis
carried out in this paper.

The rectangular boundary COl’ldlthl‘lS assumed in Fig. 1
correspond to actual metallic enclosures or to electric/
magnetic walls induced by the symmetries of the structure
and the propagation mode. It is clear that single and
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Flg 1 Cross section of the generahzed pl anar transmission line studied
in this paper. The system is composed of N. isotropic or uniaxial/bi-
axial dielectric layers with conductors printed on the Mth interface.
The rectangular enclosure represents electric or magnetic walls.

coupled microstrip lines, slotlines, and finlines can be
modeled by the proposed general configuration. Our pur-
pose is to provide a unified method to find the dispersive
behavior of the propagation constant for this kind of
transmission system in such a manner that the dielectric
anisotropy and the number of dielectric layers or coupled
lines are no longer a problem.

III.. SPECTRAL ANALYSIS

A full-wave analysis of the frequency-dependent behav-
ior of the planar transmission system shown in Fig. 1
requires solving the Helmholtz equation subject to the
appropriate boundary conditions. For each dielectric layer
(see Fig. 2(a)) the electric field vector ( E ) must obey the
following equations:

(2a)
(2b)

with
k%= w’pgeo-

As stated above, the SDA has proved to be especially
suitable in treating the multiple boundary problems we are
interested in. Assuming time harmonic operation, each of
the field quantities can be expressed as follows:

-+ 00
AGny,2)= L (A y)es=ye s

n=—0o0

(3)

where A(n, y) is the Fourier transform of A in the x
direction, a, is a Fourier variable, and 8 is the unknown
propagation constant.

Equations (2) can be rewritten in the spectral domain as
a set of ordinary differential equations for the Fourier
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Fig. 2. (a) ith dielectric layer of the structure in Fig. 1. (b) Two-layer
structure to calculate g; ;(n). (¢) Single-layer to calculate g; ;. (n).

transforms of the electric field components:

d> ~ = =
— _E=B-E 4a
SFE-BE, (42)
- Yﬁ a”BS:; > E;i
B, = " 2 Ei= s
anﬁfxy Yzi zi
) A d N .
YyiEyi=J:1_{anExi+IBEzi} (4b) '
y
where
Yo = B2+ € b — €ikg (5a)
vi=B>+al-e ks (5b)
Yi=e€ B+ an — €lk] (5¢)
and
e, =€./¢, ef=¢,—1 (6a)
€, =€/€, eX=¢ -1 (6b)

Note that the electric anisotropy is responsible for the
coupling in (4a). Isotropic materials yield decoupled equa-
tions.
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Let us center our attention on the ith dielectric layer of
the structure (Fig. 2(a)). The general solution of (4a) in the
ith dielectric layer can be expressed in terms of the spec-
tral two-component electric vectors parallel to the region
interfaces delimiting this region: (E:, E:_l). Using matrix
notation,

sinh [Ei(y - hi—l)]

Eln. y) = sinh[I?,Hi] :
P sinh[I?i(i/—hi)] ~E::71 )
sinh | K, 4]
with
B =| 2| E=Elnr=n)

where we have defined a transverse propagation matrix
related to each dielectric layer:

x-(5)".

)

This matrix reduces to the scalar transverse propagation
constant given by Itoh [14] for isotropic materials.

Note that the entire problem can be subdivided into a
number of simpler two-layer problems corresponding to
each pair_of adjacent dielectrics. A surface current distri-
bution, f(n), lying at the ith interface is linearly related
to the horizontal components of the electric fields at the
(i —Dth, ith, and (i +1)th interfaces. In the spectral do-
main this relation can be written in a very simple manner:

— —>

]'"-’.U'OJ?(") = §i,i7j(n)'Ei—j+ Ezz(n)E_: + §i,i+1(n)'Ei+1

©)

where

Ty =17

z

(In the space domain these expressions involve complex
convolution integrals.)

Our problem reduces now to one of determining the g
matrices. Fortunately, these can be easily derived from the
solution of two simple problems involving only one or two
dielectric layers.

A. Evaluation of g, ;

In order to find g, , we must solve the problem shown in

Fig. 2(b). The tangential electric field at the interface

between the ith and (i +1)th dielectric layers is related to

the surface current at this interface as follows:
jwﬂoj;-= §zz(n)E:

(10)
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The tangential magnetic field in the spectral domain is
derived from the electric field for each layer via

5 =d =
JouoH, = Y,EE,-(n,y) (11)
where
= y _anB -szl_Bz
Y, =(1/v, (12)
( g )Iiatzz_ ‘Y)%z anB

From (11) the magnetic field is known as a function of
the tangential electric field at the interface. Applying the
corresponding boundary conditions,

{i
1 0

|Hi(n, )= B (n, )] _,
(13)
we obtain a linear relation between Iz::(n) and Jj(n) and

thus an expression for g, , (for a biaxial anisotropic dielec-
tric medium):

Zon(n) =T ¥,y

~
=

=T-J(n)

el

Nll
+
-
(@]
e
=
—_——

Rt

H z

K -coth(I?H)}. (14)

B. Evaluation of g, , , |

In this case, the structure to be considered is shown in
Fig. 2(c). The tangential electric field at the (i +1)th
interface and the corresponding surface current on the
ground plane are related by

jwnu‘O‘]i(n)=§1,z+1(n)'Et+l' (15)
Once again we apply the boundary conditions for H and
find the expression for g, . ;:

§1,1+1(n) =_T_l';1+1.]_ct+1'[Sinh(%z—kl )]
From the reciprocity theorem,

§l+J,l(n)=§l,l+J(n)' (17)

Now the linear reldtion in the spectral domain (9) is
known. In the following section this expression will be
used to derive the dyadic Green’s function associated with
the multilayer structure in Fig. 1. This function in conjunc-
tion with the Ritz—Galerkin method will provide the dis-
persion relation we are interested in. Note that (14) and
(16) are even functions of K and so they can be properly

evaluated from a knowledge of the eigenvalues of B.

(16)

IV. THE SPECTRAL DyaDpIC GREEN’S FUNCTION

Assuming the presence of conductors at the Mth inter-
face, the Fourier transforms of the surface current density
and the tangential components of the electric field are
related via the spectral dyadic Green’s function:

Jotody (1) = Lyg(n)- Eyy ()

B E:M(n)=jwp‘OG_M(n)'JM(n)
with L,,(n)~!=G,,(n) = dyadic Green’s function.

(18a)
(18b)
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As mentioned in the previous section, expression (9) is
of interest mainly because it provides a method for deriv-
ing a general form of the dyadic Green’s function for
multilayered configurations. Relation (9) is formally iden-
tical to the one reported in [27], so we can use a similar
recurrence expression to evaluate the dyadic Green’s func-
tion. Caution must be exercised in recognizing that the
expressions for g in [27] are scalar and in this paper are
2X2 dyadics. In this way, once g matrices have been
calculated for each layer and account is taken of the
absence of currents at the interfaces without conductors,
the inverse of the spéctral dyadic Green’s function can be
obtained from the following recurrence formulas:

Ly (n) =LE(n)+ L8 4 (n)=Fu w(n)  (19)
where
Lt =g l_gi,l—l.(Ll—l) 'ngl,z (203)
L= N—z.N—z_gN—z,N*H»l'(Lt—L) “8y—r+1,n—; (20b)

i>1,
The first term (i =1) in the above relations depends on

the nature of the upper and lower interfaces:
a) ground planes:

Zf = §1,1 L[1j= §N—1, N-1 (213)
b) magnetic walls:

= = = = -1 =
Lf =811 2810 [go,o] 80,1 (21b)
Z¥=§N—1,N—1“’2§N~1,N'[§N,N]_ 'EN.N~1 (210)

with

S0.0= 2? Y,-K,-coth [I?lHll (22a)
Gy =2T-T, K, -coh|K,Hy|.  (220)

These expressions lead to a computer subroutine whose
input variables are the tensor permittivities and thicknesses
of the dielectric sheets. The spectral Green’s function is
then obtained for any layered geometry using this subrou-
tine. Because of the form of the described derivation
process, the asymptotic behavior of the Green’s function is
easily obtained. This behavior coincides with the one of
the structure shown in Fig. 2(b). That is, although the
Green’s function for a general multilayer structure is very
complex, its asymptotic part reduces to the Green’s func-
tion of a simpler equivalent structure [18]. This fact is
exploited in the numerical implementation of the method.

V. NUMERICAL RESULTS

The dispersion equation for the generalized structure
considered in this paper is obtained by applying the con-
ventional Ritz—Galerkin procedure. The variational ex-
pressions used as starting points involve either the surface
current density on the strips (striplike configurations) or
the tangential electric fields in the slots (slotlike and finline
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Fig. 3. Comparison between our results ( ) and the measurements
reported in [30] (o) for the large-scale microstrip line shown in the
figure.

configurations). In the spectral domain these expressions
are as follows.
Striplike systems:

+o0 o~ - ~

Y Ti(n)-Gy(n)-J(n) =0, (23a)
Slotlike or finline systems:

+ o0 ~ _ ~

X Ej(n)-Ly(n)-Ef(n)=0.  (23b)

As is well known, a proper choice of the basis functions
approximating the actual current or field distributions is
critical at this point of the analysis. Following the sugges-
tions of Jansen [28], the experience furnished by other
authors, and our own numerical experiments, the following
set of basis functions has been found especially suitable
for computational purposes:

xX—s,
n(%/2)

fu(x) =

g&w=1w{x_*)
w,/2

with

JMz(x)’ EMx(x) = Z Zainfnla(x)

JMx(x)’EMz(x)=ZZbrlng:n(x) (25)
t m

where s, is the central coordinate of the ith strip (slot), w,

is the strip (slot) width, and 7,,(x), U, (x) are Chebyshev

polynomials of the first and second kind. (Note that the

edge condition is explicitly taken into account.)

The application of the Ritz—Galerkin method leads to a
homogeneous system of linear equations for the expansion
coefficients in (25) which has a nontrivial solution when
the determinant of the coefficient matrix vanishes. This

N T T T T T T T T T 10
a —
[
‘a; L
w
J 6 fl'll GCHz
A | ] 1 I | ! i 1
o 2 4 6 8 10
1)01:02:50le , w=1mm
(2w 1n, e -
I P R R
2)D1=Dz= 59mud , w =1mm
w 51:10.2 3 Ez=2_2
Eol 3) D1=50 mtl , Ww=tl2mm

EDZ £10y = S0ml, 0, = 62 md
0y

Fig. 4. Effective dielectric constants for several microstrip configura-
tions as a function of frequency. Solid lines are with the results in [18];
circle points have been computed with our programs.

w =1.2mm

€y: 102 ,&,:22

condition provides the dispersion relation in numerical
form. )

The singular behavior of the functions in (25) at the end
of the conductors spreads out their Fourier spectrum in
such a way that the series defining the entries of the
Ritz—Galerkin matrix are very slowly convergent. In order
to gain numerical efficiency it is necessary to overcome
this difficulty. Fortunately, with this choice of basis func-
tions, the asymptotic behavior of the above-mentioned
series can be extracted and added analytically or reduced
to an extremely fast converging series. The difference
between the original series and its asymptotic part is added
numerically, but its convergence is much better than that
of the original one. It is important to emphasize that all
series appearing in the computations present the same
asymptotic behavior in such a way that these computations
must be performed only once. In this way, the most time
consuming part of the SDA is substantially improved. This
mathematical preprocessing requires a knowledge of the
asymptotic behavior of the spectral Green’s function, which
is very complex if several dielectric layers are present.
Nevertheless, as discussed above, it must be noted (in
accordance with [18]) that this behavior depends only on
the dielectric layers immediately adjacent to the interface
with conductors. The contribution of the remaining layers
decreases exponentially with «,, as can be seen from the
form of (16).

Using the theory in this paper and taking into account
the above considerations, we have written two computer
programs to calculate the propagation constants of both
generalized microstrip and generalized finline or slotlike
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Fig. 5. In this figure we compare our results (circle points) with the
ones recently reported by Shalaby et al. [20] (solid lines) for the
unilateral finline on uniaxial anisotropic substrate drawn in the figure.
(a) Dispersion characteristics of the first three odd modes for a finline
on (i) sapphire and (i) boron nitride substrates. W/b = 0.1; substrate
thickness = 0.125- mm. (b) Slot width dependence of the effective
dielectric constant for the dominant mode for a finline on four differ-
ent substrates: (i) Epsilam-10, (i) sapphire,. (iii) boron nitride, (iv)
¢,=22. The substrate thickness and the waveguide are the same
as in (a).

structures. In order to check the computer programs, we
have made exhaustive comparisons with previously pub-
lished results. First, we have checked the low-frequency
values with those obtained with the method reported in [3],
obtaining agreement better than 0.5 percent. We then
compared our results with other results obtained using
very accurate methods. For instance, the results have been
checked against those given by Kretch and Collin [29]
(microstrip line on isotropic and anisotropic substrates),
and they agree to within the accuracy with which data can
be read from the graphs. The results obtained with our
programs are also 1ndlst1ngulshab1e from the ones reported
in [11, fig. 2] and [26, table I]. We have also made compar-
isons with experimental data reported in the literature. For
instance, we have found excellent agreement between our
results and the measurements reported by Deibele et al.
[30] for a large-scale microstrip model on an isotropic
substrate (Fig. 3). This fact confirms the accuracy of the
programs for very high frequencies. Fig. 4 shows a compar-
ison with the results recently reported by Das and Pozar
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Fig. 6. D1sperswe behavior of the three qua51 TEM modes of the three
coupled strips on Epsilam-10 substrate shown in the figure. Solid lines
have been computed taking into account the anisotropy of the sub-

-strate (¢, =13.0,¢,, =10.3) while-in dashed lines the substrate has been
assumed to be 1sotrop1c with €, =10.3. D1screpanc1es ‘are not negligible
at all. ¢ =20 mm; d=10 mm; hA=1 mm; Wy=W;=1 mm; W, =2
mm; S; =S, =05 mm.

[18] for several multilayer microstrip structures, and in Fig.
5 the comparison refers to a unilateral finline recently
studied by Shalaby et al. [20] for different iso/ amsotroplc
substrates. Very good agreement with previously published
results [6] has also been found for higher order modes.
Although only a few results have been included, we have
also made comparisons with many other numerical and-
graphical data reported.in the works cited in this paper
and certain others not cited here. In most cases the agree-
ment was very satisfactory. From this, we can use the
developed programs with confidence. As an example, in
Fig. 6 we show the mode effective dielectric constants for a
three-strip configuration on Epsilam-10. The data have
been calculated both neglecting the anisotropy of the sub-

_strate and taking it into account. As can be seen from the

graphs, the effect of the anisotropy is not negligible. This
effect is very important in many structures used in practice
and so the electric anisotropy. of the materials used as
substrates should be considered in the computation of the
propagation characteristics of the lines. Another example
can be viewed in Fig. 7. Even- and odd-mode effective
dielectric constants for two symmetrically coupled strips
on P.B.N. are shown. The difference between the mode
phase velocities is significantly reduced using a thin over-
lay made of the same material, as can be seen from the
figure. This result could be useful in coupler design.
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Fig. 7. Even- and odd-mode effective dielectric constant for (a) coupled
strips on P.BN. (d =0) and (b) the same structure covered with a
P.B.N. overlay (d = 0.08 mm). ¢, =¢,=5.12; ¢,=3.40; w=1.2 mm;
s=0.5 mm; A=0.635 mm. ’

VL

A unified theoretical and numerical analysis of general-
ized planar or quasi-planar structures is presented in this
paper. This analysis allows us to compute the propagation
constants of fundamental and higher order modes for these
types of structures taking into account uniaxial and biaxial
anisotropic dielectrics and an arbitrary number of dielec-
tric layers. The analysis is achieved using the spectral-
domain approach, which is found to yield excellent accu-
racy if a judicious choice of trial functions is made. The
spectral Green’s function is computed, wsing a simple
recurrence expression, from the solutions of two elemen-
tary one- and two-layer problems. Each dielectric layer is
characterized by its transverse propagation matrix in such
a way that a new dielectric layer means only the introduc-
tion of a simple 2 X2 matrix in the analysis. The dispersion
solution is obtained by applying the Ritz—Galerkin method,
using as unknowns the surface current densities or the
tangential electric fields depending on the type of structure
to be analyzed (microstrip or finline, respectively). The
asymptotic behavior of the series defining the entries of
the Ritz—Galerkin matrix must be explicitly incorporated
in order to accelerate the convergence and gain accuracy.
The results obtained with the theory in this paper compare
very well with previously published data for particular
structures.

CONCLUSIONS
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