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Abstract —In this paper the spectral-domain arratysis (SDA) is general-

ized in order to compute the dispersive properties of a wide variety of

planar and quasi-planar transmission lines (microstrips and firrlines) printed

on a stratified dielectric medium. Uniaxial and biaxial dielectric anisotropy

can be easily manipulated due to the definition of a “transverse propaga-

tion matrix” characterizing each dielectric layer. The whole bonndary

value problem is reduced to two simpler problems involving only one or

two dielectrics. Then, tfre spectral dyadic Green’s function is derived via a

recurrence afgorithm. The dispersion equation is derived by using the

Ritz- Galerkirr method. The numerical convergence is substantially im-

proved taking into account the asymptotic behavior of the series. A number

of illustrative examples have been included to emphasize the power of the

method.

I. INTRODUCTION

A CCURATE knowledge of the propagation parame-

ters of printed lines plays a vital role in the design of

modern microwave and millimeter-wave integrated cir-

cuits. Microstrip and finline configurations, the most

widely used transmission lines for this range of frequen-

cies, are becoming more and more complex, so it is desir-

able to include in any analysis the presence of several

dielectric layers and/or coupled strips or fins. On the

other hand, since certain materials used as substrates in

those circuits exhibit dielectric anisotropy (occurring natu-

rally or being introduced during the manufacturing

process), it is therefore interesting to include this contin-

gency. The importance of accounting for the anisotropy

has been emphasized in a comprehensive review paper by

Alexopoulos [1]. In this paper and the references therein,

the reader can find most of the major contributions on

planar lines with anisotropic substrates published prior to

1985.

The multiple boundary value problem appearing when

we have a number of planar conductors embedded in a
stratified dielectric medium has been examined under the

quasi-TEM assumption using different analytical tech-

niques (a detailed review of the literature on this subject is
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included in [2]). Cases involving anisotropic dielectrics

have also been treated, for instance, in [3]. Unfortunately,

the validity of these analyses is restricted to microstrip-like

structures operating at the lower end of the microwave

spectrum. The dispersive properties of these lines cannot

be inferred from this type of model, and the analysis

cannot be applied to non-TEM configurations such as

finlines. Therefore, a full-wave analysis is required to ade-

quately model their behavior. A number of techniques

capable of dealing with planar structures with isotropic

and/or anisotropic dielectrics using a dynamic model have

already been described. These include the finite difference

technique [4], the least square boundary residual method

[5], the singular integral equation method [6], the meth-

od of lines [7], the generalized transverse resonance

method [8], mode matching [9], the transmission line ma-

trix method [10], and the Wiener–Hopf technique [11].

Nevertheless, the spectral-domain technique (SDA) is the

most widely used, because of its feasibility in manipulating

multilayer structures with one or several conducting strips

[12], [13] or fins [14], [15].

In order to apply the SDA, the spectral dyadic Green’s

function must be calculated for the structure to be ana-

lyzed. To our knowledge, three different systematic meth-

ods to do this have been given in the literature, i.e., the

spectral-domain imrnittance approach [16], the transfer

matrix approach [17], and, more recently, an iterative

algorithm based on the use of vector potentials and equiva-

lent transmission line problems [18]. All these methods

consider isotropic materials, although the concept of

equivalent transverse transmission lines is extended in [19]

to uniaxial anisotropic dielectrics and recently has been

applied to the analysis of a unilateral finline with uniaxial
substrate [20] in the SDA context. Maia et al. apply the

SDA to microstrips and finlines on uniaxial substrates [21]

using an extension of the Hertz potential treatment pro-

posed by Lee and Tripathi [22]. A very general approach

for complex anisotropic layered media using a four-com-

ponent formulation (which yields first-order partial differ-

ential equations) is discussed from a theoretical point of

view by Krowne [23]. The dispersive character of the

fundamental modes of open microstrip and slotlike struc-

tures on anisotropic substrates is treated by introducing
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some transformed fields and using second-order differen-

tial equations [24], [25]. A fourth-order formulation is

presented in [26] toanalyze abilateral finlineon a biaxial

anisotropic dielectric substrate. ,The extension of this

method to a general multilayer problem is not straightfor-

ward.

The approach presented in this paper tries to overcome

the difficulties inherent in the analysis of multilayer struc-

tures involving uniaxial or biaxial anisotropic dielectrics,

and also makes use of the SDA. The spectral dyadic

Green’s function is obtained via a recurrence algorithm

similar to the one reported in [27] for the quasi-static case.

The algorithm is based on the definition of a “transverse

propagation matrix” associated with each dielectric layer

and the reduction of the whole problem to simpler single-

or two-layer partial problems. The method leads to sec-

ond-order differential equations, in contrast to [23] or [26].

The dispersion equation is achieved via the standard

Ritz-Galerkin method. The asymptotic behavior of the

dyadic Green’s function and the Fourier transforms of the

basis functions (used to approximate the surface charge

density on the strips or the tangential electric fields in the

slots) is explicitly incorporated in the computer programs,

resulting in a drastic improvement of the convergence of

the series defining the entries of the Ritz-Galerkin matrix.

The theory developed in the paper has been used to write a

computer program to find the dispersion characteristics

(dominant and first higher order modes) of multistrip or

multifin configurations embedded in a layered dielectric

medium including uniaxial and biaxial anisotropic di-

electrics. These programs have been conveniently checked

with previously published results.

II. STATEMENT OF THE PROBLEM

Many planar transmission lines used in practice can be

viewed as particular cases of the general geometry shown

in Fig. 1. This structure is assumed to be uniform in the z

direction and it consists of a number of printed conductors

embedded in a layered lossless dielectric medium, the

whole being enclosed by rectangular boundaries. The met-

allization thickness is negligible, and the electrical proper-

ties of the nonmagnetic dielectric materials will be de-

scribed by the following diagonal tensor:

Eo:= Eo(Exfi + Cyjj + E222). (1)

It is possible to take into account both isotropic and

uniaxial or biaxial anisotropic materials with optical axes

normal to region interfaces (materials are often supplied or

selected with this orientation). This, together with the

treatment of the multilayer problem using a “transverse
propagation matrix,” is the main feature of the analysis

carried out in this paper.

The rectangular boundary conditions assumed in Fig. 1

correspond to actual metallic enclosures or to electric/

magnetic walls induced by the symmetries of the structure

and the propagation mode. It is clear that single and
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Fig. 1. Cross section of the generalized planar transmission line studied
in this paper. The system is composed of N isotropic or uniaxial/bi-
axial dielectric layers with conductors printed on the Mth interface.
The rectangular enclosure represents electric or magnetic walls.

coupled microstrip lines, slotlines, and finlines can be

modeled by the proposed general configuration. Our pur-

pose is to provide a unified method to find the dispersive

behavior of the propagation constant for this kind of

transmission system in such a manner that the dielectric

anisotropy and the number of dielectric layers or coupled

lines are no longer a problem.

III. SPECTRAL ANALYSIS

A full-wave analysis of the frequency-dependent behav-

ior of the planar transmission system shown in Fig. 1

requires solving the Hehnholtz equation subject to the

appropriate boundary conditions. For eacJhdielectric layer

(see Fig. 2(a)) the electric field vector (E) must obey the

following equations:

+(x’) ‘=0

(2a)

(2b)

with

As stated above, the SDA has proved to be especially

suitable in treating the multiple boundary problems we are

interested in. Assuming time harmonic operation, each of

the field quantities can be expressed as follows:

A(x, y,z) = ‘Em{fi’(n,y)e-~anx}e-jpz (3)

where A-( n, y) is the Fourier transform of A in the x

direction, a. is a F&rrier variable, and B is the unknown

propagation constant.

Equations (2) can be rewritten in the spectral domain as

a set of ordinary differential equations for the Fourier
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Fig. 2. (a) ith dielectric layer of the structure in Fig. 1. (b) Two-layer
structure to calculate ~,,,(n). (c) Single-layer to calculate ~i,,+j(n).

transforms of the electric field components:

d2--
—~=iii.g
dy 2

(4a)

where

and

Ei = cx/6y c
*i=ti _l

XY XY XY
(6a)

Note that the electric anisotropy is responsible for the

coupling in (4a). Isotropic materials yield decoupled equa-

tions.

Let us center our attention on the i th dielectric layer of

the structure (Fig. 2(a)). The general solution of (4a) in the

i th dielectric layer can be expressed in terms of the spec-

tral two-component electric vectors parallel to the region
:2

interfaces delimiting this region: ( Ei, E,_ ~). Using matrix

notation,

~(?z,y)= sinh[~, (y–hi_l)]

sinh [ Z,Hi ]

with

[1ix,j(n, y)= ~, ij=j. (n,y=hi)

Zi

where we have defined a transverse propagation matrix

related to each dielectric layer:

2,= (ZJ’2. (8)

This matrix reduces to the scalar transverse propagation

constant given by Itoh [14] for isotropic materials.

Note that the entire problem can be subdivided into a

number of simpler two-layer problems corresponding to

each pair- of adjacent dielectrics. A surface current distri-

bution, ~(n), lying at the i th interface is linearly related

to the horizontal components of the electric fields at the

(i - l)th, ith, and (i+ l)th interfaces. In the spectral do-

main this relation can be written in a very simple manner:

( ).j_j+~i,i(n).j+ii, i+l(n).j+l~“POi’(n) =Fi,i-y n
(9)

where

(In the space domain these expressions involve complex

convolution integrals.)

Our problem reduces now to one of determining the ~
matrices. Fortunately, these can be easily derived from the

solution of two simple problems involving only one or two

dielectric layers.

A. Evaluation of fi,,

In order to find ~i, i we must solve the problem shown in

Fig. 2(b). The tangential electric field at the interface

between the ith and (i+ l)th dielectric layers is related to

the surface current at this interface as follows:

jtipoj=ji,i(n).j. (lo)
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The tangential magnetic field in the spectral domain is

derived from the electric field for each layer via

where

(11)

From (11) the magnetic field is known as a function of

the tangential electric field at the interface, Applying the

corresponding ,boundary conditions,

(13)

we obtain a linear relation between ~(n) and J;(n) and

thus an expression for ~1,, (for a biaxial anisotropic dielec-

tric medium):

\ /

+~. ~,. coth(~iHl)}. (14)

B. Evaluation of ~,,, ● ~

In this case, the structure to be considered is shown in

Fig. 2(c). The tangential electric field at the (i+ l)th

interface and the corresponding surface current on the

ground plane are related by

Once again we apply the boundary conditions for ~ and
find the expression for ~,,, + ~:

From the reciprocity theorem,

Now the linear relation in the spectral domain (9) is

known. In the following section this expression will be

used to derive the dyadic Green’s function associated with

the multilayer structure in Fig. 1. This function in conjufic-

tion with the Ritz-Galerkin method will provide the dis-

persion relation we tie intgested in. Note that (14) and

(16) are even functions of ~ and so they can be p~operly

evaluated from a knowledge ‘of the eigenvalues of ~.

IV. THE SPECTRAL DYADIC GREEN’S FUNCTION

Assuming the presence of conductors at the Mth inter-

face, the Fourier transforms of the surface current density

and the tangential components of the electric field are
related via the spectral dyadic Green’s function:

jo~o;M(n) =ZM(n). ~M(n) (18a)

iM(n)=japoi7M(n).iM(n) (18b)
— —

with ~~( n ) – 1 = GM(n) = dyadic Greefi’s function.

As mentioned in the previous section, expression (9) is

of interest mainly because it provides a method for deriv-

ing a general form of the dyadic Green’s function for

multilayered configurations. Relation (9) is formally iden-

tical to the one reported in [27], so we can use a similar
recurrence expression to evaluate the dyadic Green’s func-

tion. Caution must be exercised in recognizing that the

expressions for ~ in [27] are scalar and in this paper are

2 X 2 dyadics. In this way, once ~ matrices have been

calculated for each layer and account is taken of the

absence of currents at the interfaces without conductors,

the inverse of the spectral dyadic Green’s function can be

obtained from the following recurrence formulas:

ZM(n)=Zfi(n) +Z~_M(n)-~M, M(n) (19)

where

(20a)

i>l.

The first term (i= 1) in the above relations depends on

the nature of the upper and lower interfaces:

a) ground planes:

(21a)

b) magnetic walls:

[= ]-L,
Z?= ;l,l –2~1,0. go,o , (21b)

with

(22a)

These expressions lead to a computer subroutine wliose

input variables are the tensor permittivitiei and thicknesses

of the dielectric sheets. The spectral Green’s function is

then obtained for any layered geometry using this subrou-

tine. Because of the form of the described derivation

process, the asymptotic behavior of the Green’s function is

easily obtained. This behavior coincides with the one of

the structure shown in Fig. 2(b). That is, although the

Green’s function for a general multilayer structure is very

complex, its asymptotic part reduces to the Green’s func-

tion of a simpler equivalent structure [18]. This fact is

exploited in the numerical implementation of the method.

V. NUMERICAL RESULTS

The dispersion equation for the generalized structure

considered in this paper is obtained by applying the con-

ventional Ritz-Galerkin procedure. The variational ex-

pressions used as starting points involve either the surface

current density on the strips (str; plike configurations) or

the tangential electric fields in the slots (slotlike and finline
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Fig. 3. Comparison between our results (—) and the measurements
reported in [30] ( o ) for the large-scale microstrip line shown m the
figure,

configurations). In the spectral domain these expressions

are as follows.

Striplike systems:

y jJ?z).EM(n).jj(n)=o. (23a)
~=.~

Slotlike or finline systems:

~ l$’’(n).ZM(n).~J(n) =0. (23b)

As is well known, a proper choice of the basis functions

approximating the actual current or field distributions is

critical at this point of the analysis. Following the sugges-

tions of Jansen [28], the experience furnished by other

authors, and our own numerical experiments, the following

set of basis functions has been found especially suitable

for computational purposes:

f;,(x) =

with

lm

(25)

where s, is the central coordinate of the i th strip (slot), W,

is the strip (slot) width, and T~(x ), U~(x ) are Chebyshev

polynomials of the first and second kind. (Note that the

edge condition is explicitly taken into account.)

The application of the Ritz-Galerkin method leads to a

homogeneous system of linear equations for the expansion

coefficients in (25) which has a nontrivial solution when

the determinant of the coefficient matrix vanishes. This

I I , I I I I I I 10

1 \
8 -“

‘ 6) freq CHZ
I I I I 1 1 I I 1

0 2 4 6 8 10

2)lJ1=D 2=59mtl, w=lmm

w El : 10.2 , E2 =2.2

~ 1
f“l 3)D1- - 50 mtl , w = 1.2mm

Esx w ‘12mm

i,)lJ1 , 5om Li ,02= 62 mLi

E, = 10,2 , E2 =2.2

Fig, 4. Effective dielectric constants for several microstrip configura-
tions as a function of frequency, Solid lines are with the results in [18];
circle points have been computed with our programs.

condition provides the dispersion relation in numerical

form.

The singular behavior of the functions in (25) at the end

of the conductors spreads out their Fourier spectrum in

such a way that the series defining the entries of the

Ritz-Galerkin matrix are very slowly convergent. In order

to gain numerical efficiency it is necessary to overcome

this difficulty. Fortunately, with this choice of basis func-

tions, the asymptotic behavior of the above-mentioned

series can be extracted and added analytically or reduced

to an extremely fast converging series. The difference

between the original series and its asymptotic part is added

numerically, but its convergence is much better than that

of the original one. It is important to emphasize that all

series appearing in the computations present the same

asymptotic behavior in such a way that these computations

must be performed only once. In this way, the most time

consuming part of the SDA is substantially improved. This

mathematical preprocessing requires a knowledge of the

asymptotic behavior of the spectral Green’s function, which

is very complex if several dielectric layers are present.

Nevertheless, as discussed above, it must be noted (in

accordance with [18]) that this behavior depends only on

the dielectric layers immediately adjacent to the interface

with conductors. The contribution of the remaining layers

decreases exponentially with a., as can be seen from the

form of (16).

Using the theory in this paper and taking into account

the above considerations, we have written two computer

programs to calculate the propagation constants of both

generalized microstrip and generalized finline or slotlike
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Fig. 5. In this figure we compare our results (circle points) with the
ones recently reported by Shalaby et al. [20] (solid lines) for the
unilateral fintine on uniaxial anisotropic substrate drawn in the figure.
(a) Dispersion characteristics of the first three odd modes for a finline
on (i) sapphire and (ii) boron nitride substrates. W/b= 0.1; substrate
thickness = 0.125 mm. (b) Slot width dependence of the effective
dielectric constant for the dominant mode for a finline on four differ-
ent substrates: (i) Epsilam-10, (ii) sapphire, (iii) boron nitride, (iv)
.sr= 2.2. The substrate thickness and the waveguide are the same
as in (a).

structures. In order to check the computer programs, we

have made exhaustive comparisons with previously pub-

lished results. First, we have checked the low-frequency

values with those obtained with the method reported in [3],

obtaining agreement better than 0.5 percent. We then

compared our results with other results obtained using

very accurate methods. For instance, the results have been

checked against those given by Kretch and Collin [29]
(microstrip line on isotropic and anisotropic substrates),

and they agree to within the accuracy with which data can

be read from the graphs. The results obtained with our

programs are also indistinguishable from the ones reported
in [11, fig. 2] and [26, table I]. We have also made compar-

isons with experimental data reported in the literature. For

instance, we have found excellent agreement between our

results and the measurements reported by Deibele et al.

[30] for a large-scale microstrip model on an isotropic

substrate (Fig. 3). This fact confirms the accuracy of the

programs for very high frequencies. Fig. 4 shows a compar-

ison with the results recently reported by Das and Pozar

d

I

9

8

7

6

0 5 10 15 20

Fig. 6. Dispersive behavior of the three quasi-TEM modes of the three
coupled strips on Epsilam-10 substrate shown in the figure. Solid lines
have been computed taking into account the anisotropy of the sub-
strate (CX=13.0, CY=10.3) while in dashtd lines the substrate has been
assumed to be Isotropic, with c, =10.3. Discrepancies are not negligible
at all. a=20 mm; d=10 mm; h=l mm; WI= W?=l mm; W5=2
mm; SI = S2= 0.5 mm.

[181 for several multilayer microstrip structures, and in Fig.

i the comparison refers to a unilateral finline recent~

studied by Shalaby et al. [20] for different iso~anisotropic

substrates. Very good agreement with previously published

results [6] has also been found for higher order modes.

Although only a few results have been included, we have

also made comparisons with many other numerical and

graphical data reported in the works cited in this paper

and certain others not cited here. In most cases the agree-

ment was very satisfactory. ,From this, we can use the

developed programs with confidence. As an example, in

Fig. 6 we show the mode effective dielectric constants for a

three-strip configuration on Epsilam-10. The data have

been calculated both neglecting the anisotropy of the sub-

strate and taking it into account. As can be seen from the

graphs, the effect of the anisotropy is not negligible. This

effect is very important in many structures used in practice

and so the electric anisotropy of the materials used as

substrates should be considered in the computation of the

propagation characteristics of the lines. Another example
can be viewed in Fig. 7. Even- and odd-mode effective

dielectric constants for two symmetrically coupled strips

on P.B.N. are shown. The difference between the mode
phase velocities is significantly reduced using a thin over-

lay made of the same material, as can be seen from the

figure. This result could be useful in coupler design.
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Fig. 7. Even- and odd-mode effective dielectric constant for (a) coupled
strips on P.B.N. (d = O) and (b) the same structure covered with a
P.B.N. overlay (d= 0.08 mm). <X==c== 5.12; 6, = 3.40; w =1.2 mm;
s = os mm; h = 0.635 mm.

VI. CONCLUSIONS

A unified theoretical and numerical analysis of general-

ized planar or quasi-planar structures is presented in this

paper. This analysis allows us to compute the propagation

constants of fundamental and higher order modes for these

types of structures taking into account uniaxial and biaxial

anisotropic dielectrics and an arbitrary number of dielec-

tric layers. The analysis is achieved using the spectral-

domain approach, which is found to yield excellent accu-

racy if a judicious choice of trial functions is made. The

spectral Green’s function is computed, using a simple

recurrence expression, from the solutions of two elemen-

tary ofie- and two-layer problems. Each dielectric layer is

characterized by its transverse propagation matrix in such

a way that a new dielectric layer means ordy the introduc-

tion of a simple 2 X 2 matrix in the analysis. The dispersion

solution is obtained by applying the Ritz-Galerkin method,

using as unknowns the surface current densities or the

tangential electric fields depending on the type of structure

to be analyzed (microstrip or finline, respectively). The

asymptotic behavior of the series defining the entries of

the Ritz-Galerkin matrix must be explicitly incorporated

in order to accelerate the convergence and gain accuracy.

The results obtained with the theory in this paper compare

very well with previously published data for particular

structures.
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